

Experimental Section

¹H NMR spectra were recorded at 400 MHz on a Bruker AMX 400 with TMS as internal reference in CDCl₃ solutions. The 2D DQF-COSY consisted of 2048 datapoints in *t*₂ and 512 increments in *t*₁. The data were apodized with a shifted sine-bell square function in both dimensions and processed to a 2K x 1K matrix. For the TOCSY experiment, the total TOCSY mixing time was set to 65 ms. The spectrum was acquired with 1024 data points in *t*₂ and 512 FIDs in *t*₁. The data were apodized with a shifted sine-bell square function in both dimensions and processed to a 1K x 1K matrix. The NOESY experiments were acquired with a mixing time of 150ms, 1024 datapoints in *t*₂ and 512 increments in *t*₁.

Hydrogen-bonded assemblies 2₃•(DEB)₆ were prepared by mixing calix[4]arene dimelamines 2 with 2.1 equivalents of DEB in CDCl₃ for 15 min.

Calix[4]arene dimelamine 2a. Bis(chlorotriazine) 3 (0.5 g, 0.57 mmol) and 2,2-dimethyl-1,3-propanediamine (10 mL) were heated at 90°C overnight. Addition of H₂O gave 2a as a white precipitate in 96% yield. Assembly 2a₃•(DEB)₆: ¹H NMR (400 MHz, CDCl₃, 298K) δ = 14.12 (s, 2 H; H_a), 13.33 (s, 2 H; H_b), 8.41 (s, 2 H; H_c) 7.60-7.58 (m, 2 H; H_d), 7.13-7.10 (m, 4 H; ArH), 6.95 (s, 2H; H_f), 6.88 (t, ³J(H,H)=7.6 Hz, 2 H; ArH), 6.66 (s, 2 H; H_e), 6.00 (s, 2 H; H_h), 4.53, 4.43, 3.15, 3.12 (2ABq, ²J(H,H)=13.6 Hz, 8 H; ArCH₂Ar), 4.11-3.93 (m, 6 H; OCH₂, H_i), 3.62 (t, ³J(H,H)=6.4 Hz, 4 H; OCH₂), 2.63 (d, ²J(H,H)=10.4 Hz, 2 H; H_j), 2.34 (d, ²J(H,H)=13.6 Hz ,2 H; H_k), 2.26-1.80 (m, 18 H; H_l, CH₂(DEB), OCH₂CH₂), 1.36-0.74 (m, 36 H; CH₃).

Calix[4]arene dimelamine 2b. Calix[4]arene dimelamine 2a (0.22 g, 0.22 mmol) was dissolved in THF (10 mL) and propyl isocyanate (0.2 mL) was added. The mixture was stirred at rt for 2h. The mixture was evaporated to dryness and CH₂Cl₂ was added. The solution was washed with H₂O and brine and dried (Na₂SO₄). Evaporation of the solvent gave the crude product as a white solid, which was purified by column chromatography (CH₂Cl₂:MeOH:NH₄OH (90:9.5:0.5)) to give the pure product in 78% yield. Assembly

2b₃•(DEB)₆: ¹H NMR (400 MHz, CDCl₃, 298K) δ=14.04 (s, 2 H; H_a), 13.23 (s, 2 H; H_b) 8.62 (s, 2 H; H_c) 7.81-7.78 (m, 2 H; H_d), 7.14-7.11 (m, 6 H; ArH, H_g), 7.00 (s, 2 H; H_f), 6.89 (t, ³J(H,H)=7.4 Hz, 2 H; ArH), 6.71 (s, 2 H; H_e), 6.13 (s, 2 H; H_h), 5.24 (d, ³J(H,H)=10.4 Hz, 2 H; H_m), 4.51 (ABq, ²J(H,H)=13.2 Hz, 4 H; ArCH₂Ar), 4.14-4.00 (m, 4 H; OCH₂), 3.93 (m, 2 H; H_i), 3.64 (t, ³J(H,H)=6.6 Hz, 4 H; OCH₂), 3.24-3.06 (m, 8 H; H_k, H_o, ArCH₂Ar), 2.64 (d, ²J(H,H)=10.8 Hz, 2 H; H_j), 2.48-2.45 (m, 2 H; H_n), 2.37 (d, ²J(H,H)=12.8 Hz, 2 H; H_l), 2.18-1.84 (m, 18 H; H_p, CH₂), 1.15-0.82 (m, 40 H; NHCH₂CH₂CH₃, CH₃), 0.66 (t, ³J(H,H)=7.2 Hz, 6 H; NHCH₂CH₂CH₃).

General Procedure for the Preparation of Calix[4]arene Dimelamines 2c-2e.

Calix[4]arene dimelamine **2a** was dissolved in CH₂Cl₂ and the corresponding acid derivative (50 equivalents) was added. The mixture was stirred at rt for 1h and then evaporated to dryness. The residue was taken up in Na₂CO₃ (4% w/w) solution and heated for 10 min at 60°C in order to hydrolyze the excess of chloride. The product was extracted with CH₂Cl₂ and washed with water and brine and dried (Na₂SO₄). Evaporation of the solvent gave the crude product as a white solid, which was purified by column chromatography or preparative TLC (CH₂Cl₂:MeOH:NH₄OH (90:9.5:0.5)) to give pure product in 47-53% yield.

Assembly **2c₃•(DEB)₆:** ¹H NMR (400 MHz, CDCl₃, 298K) δ = 14.09 (s, 2 H; H_a), 13.28 (s, 2 H; H_b), 8.58 (s, 2 H; H_c), 7.77 (m, 2 H; H_d), 7.13-7.02 (m, 8 H; H_f, H_g, ArH), 6.87 (t, ³J(H,H)=7.4 Hz, 2 H; ArH), 6.71 (s, 2 H; H_e), 6.33 (d, ³J(H,H)=8.8 Hz, 2 H; H_m), 6.06 (s, 2 H; H_h), 4.52, 4.46 and 3.10, 3.08 (2ABq, ²J(H,H)=13.2 and 13.6 Hz, 8 H; ArCH₂Ar), 4.13-4.00 (m, 6 H; OCH₂, H_i), 3.60 (m, 4 H; OCH₂), 3.42 (t, ²J(H,H)=9.0 Hz, 2 H; H_k), 2.66 (d, ²J(H,H)=8.4 Hz, 2 H; H_j), 2.36 (d, ²J(H,H)=12.4 Hz, 2 H; H_l), 2.17-1.83 (m, 18 H; CH₂), 1.38-1.31 (m, 2 H; H_{n/o}), 1.20-0.81 (m, 40 H; CH₃, N_p), 0.54 (m, 8 H; H_r, H_{n/o}).

Assembly **2d₃•(DEB)₆:** ¹H NMR (400 MHz, CDCl₃, 298K) δ=14.01 (s, 2 H; H_a), 13.25 (s, 2 H; H_b) 8.52 (s, 2 H; H_c) 7.80-7.79 (m, 2 H; H_d), 7.13-7.04 (m, 4 H; ArH), 6.95 (s, 2 H; H_f), 6.89-6.83 (m, 4 H, H_g, ArH), 6.67 (s, 2 H; H_e), 6.04 (s, 2 H; H_h), 5.14 (m, 2 H; NH_m), 4.54, 4.48 and 3.28, 3.10 (2ABq, ²J(H,H)=13.6 and 14.0 Hz, 8 H; ArCH₂Ar), 4.15-4.02 (m, 4 H, OCH₂), 3.91-3.82 (m, 4 H; H_i, OCH₂), 3.61 (m, 2 H; OCH₂), 2.76-

2.58 (m, 6 H; H_j, H_k, H_l), 2.41-2.34 (m, 2 H; H_n), 2.05-1.83 (m, 18 H; H_o, OCH₂CH₂, CH₂(DEB)), 1.25-0.80 (m, 44 H; H_p, H_q, CH₃), 0.73 (t, ³J(H,H)=7.4 Hz, 6 H; H_r).

Assembly **2e₃•(DEB)₆**: ¹H NMR (400 MHz, CDCl₃, 298K) δ=14.13 (s, 2 H; H_a), 13.34 (s, 2 H; H_b), 8.43 (s, 2 H; H_c), 7.67 (m, 2 H; H_d), 7.12 (m, 6 H; ArH + H_g), 6.90 (s, 2 H; H_f), 6.86 (t, 2H, *J* = 7.4 Hz, ArH), 6.67 (s, 2 H; H_e), 6.03 (s, 2 H; H_h), 4.51, 4.47 (2d, ²J(H,H)=13.2 and 13.6 Hz, 4 H; ArCH₂Ar), 4.14-3.64 (m, 18 H; OCH₂, H_i), 3.22-3.08 (m, 6 H; ArCH₂Ar, H_k), 2.74-2.64 (m, 4 H; H_j, H_l), 2.10-1.83 (m, 16 H; OCH₂CH₂, CH₂(DEB)), 1.31-0.86 (m, 42 H; CH₃), 0.81 (t, ²J(H,H)= 7.4 Hz, 6 H; CH₃(ethyl)).

General Procedure for the Preparation of Calix[4]arene Dimelamines 4a-4e.

Calix[4]arene dimelamine **2a** was dissolved in CH₂Cl₂ or DMF and the corresponding *N*-protected amino acid or peptide (2.2 equivalents) was added, followed by addition of EDC or HATU (2.2 equivalents) and a base (4 equivalents). The reaction was stirred at rt for 1-2 days. In the case of DMF as a solvent, the solvent was first removed and the residue was taken up in CH₂Cl₂. The product was washed with HCl (1N), H₂O, sat. Na₂CO₃ solution and brine and dried (MgSO₄). Evaporation of the solvent gave the crude product as a white solid, which was purified by column chromatography or preparative TLC (CH₂Cl₂:MeOH:NH₄OH (90:9.5:0.5)) to give pure product in 24-66%.

**MALDI-TOF mass spectrometry characterization of assemblies
 $2b_3 \bullet (CNCYA)_6 - 2e_3 \bullet (CNCYA)_6$ after Ag^+ -labeling.**

Assembly	Calc. Mass (Da) of Ag^+ -complex	Observed Mass (Da)
$2b_3 \bullet (CNCYA)_6$	5029.0	5031.0
$2c_3 \bullet (CNCYA)_6$	4939.3	4942.4
$2d_3 \bullet (CNCYA)_6$	5239.2	5240.1
$2e_3 \bullet (CNCYA)_6$	5271.2	5274.6